Received 21 June 2004

Accepted 24 June 2004

Online 30 June 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhiping Yang,‡ Ping Zhong* and Shengrong Guo

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Present address: Zhangzhou Vocational and Technical College, Zhangzhou, People's Republic of China

Correspondence e-mail: zhongp@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.064 wR factor = 0.170 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-{3-Cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-1*H*-pyrazol-5-yl}acetamide

The title compound, $C_{13}H_7Cl_2F_3N_4O$, has normal bond lengths and angles. The crystal packing is stabilized by intermolecular $N-H\cdots N$ hydrogen bonds.

Comment

Reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-pyrazole, which then reacted with acetic anhydride to give the title compound, (I) (Fig. 1).

The title compound is used in the synthesis of insecticides, such as 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)-phenyl]-4-(trifluoromethylthio)pyrazole, 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethyl)pyrazole and 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)pyrazole (Hatton *et al.*, 1993).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved View of (I), with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

organic papers

All bond lengths and angles in (I) are normal (Table 1). The crystal packing (Fig. 2) is stabilized by the weak intermolecular $N-H \cdots N$ hydrogen bonds (Table 2).

Experimental

Compound (I) was synthesized and purified according to the method of Hatton et al. (1993). Single crystals suitable for X-ray data collection were obtained by slow evaporation of an ethyl acetatetoluene (1:1) solution (m.p. 477-478 K). Spectroscopic analysis, IR (KBr, ν cm⁻¹): 3446, 2383, 1698, 1649, 1520; ¹H NMR (CDCl₃, δ , p.p.m.): 7.82 (s, 2H), 7.08 (s, 1H), 7.00 (s, 1H), 2.13 (s, 3H).

 $D_x = 1.559 \text{ Mg m}^{-3}$

Cell parameters from 2156

Mo $K\alpha$ radiation

reflections

 $\theta = 2.6 - 25.2^{\circ}$ $\mu = 0.46~\mathrm{mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.025$ $\theta_{\rm max} = 25.3^\circ$

 $h = -22 \rightarrow 20$

 $k = -10 \rightarrow 8$

 $l = -18 \rightarrow 22$

Block, colorless

 $0.44\,\times\,0.16\,\times\,0.13~\mathrm{mm}$

2768 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.079P)^2]$

+ 4.3533P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.003$

 $\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.52 \text{ e} \text{ \AA}^{-3}$

2373 reflections with $I > 2\sigma(I)$

Crystal data

C13H7Cl2F3N4O $M_r = 363.13$ Monoclinic, C2/c a = 18.8282 (6) Å b = 8.6541 (3) Å c = 19.0766 (6) Å $\beta = 95.583(1)^{\circ}$ $V = 3093.62 (18) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.824, T_{\max} = 0.943$ 7655 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.170$ S = 1.142768 reflections 209 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

1.130 (5) 1.330 (5)
1.330 (5)
1.497 (5)
1.364 (4)
1.383 (5)
1.441 (5)
119.2 (2)
121.4 (3)
120.5 (3)
119.9 (3)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3 - H3 \cdots N4^i$	0.86	2.22	3.060 (4)	166
Summatry and (i)	. 1			

Symmetry code: (i) x, 1 + y, z.

All H atoms were initially located in a difference Fourier map and were placed in geometrically idealized position and constrained to ride on their parent atom, with C-H distances in the range 0.95-1.00 Å and $U_{iso}(H) = 1.2_{eq}(C)$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No. 20272075) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. & Roberts, D. A. (1993). US Patent No. 5 232 940.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.